This page discusses the infrastructure requirements for DIGIT services. It also explains why DIGIT services are containerised and deployed on Kubernetes.
DIGIT Infra is abstracted to **[Kubernetes](https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/) which is an open-source containers orchestration platform that helps in abstracting variety of infra types that are being available across each state, like Physical, VMs, on-premises clouds(VMware, OpenStack, Nutanix, etc.), commercial clouds (Google, AWS, Azure, etc.), SDC and NIC into a standard infra type. Essentially it unifies various infra types into a standard and single type of infrastructure and thus DIGIT becomes multi-cloud supported, portable, extensible, high-performant and scalable** containerized workloads and services. This facilitates both declarative configuration and automation. Kubernetes services, eco-system, support and tools are widely available.
Kubernetes as such is a set of components that designated jobs of scheduling, controlling, monitoring
3 or more machines running one of:
Ubuntu 16.04+
Debian 9
CentOS 7
RHEL 7
Container Linux (tested with 1576.4.0)
4 GB or more of RAM per machine (any less will leave little room for your apps)
2 CPUs or more
3 or more machines running one of:
Ubuntu 16.04+
Debian 9
CentOS 7
RHEL 7
Container Linux (tested with 1576.4.0)
2 GB or more of RAM per machine (any less will leave little room for your apps)
2 CPUs or more
Full network connectivity between all machines in the cluster (public or private network is fine)
Unique hostname, MAC address, and product_uuid for every node. Click here for more details.
Certain ports are open on your machines. See below for more details
Swap disabled. You MUST disable swap in order for the Kubelet to work properly
product_uuid
Are Unique for Every NodeYou can get the MAC address of the network interfaces using the command ip link
or ifconfig -a
The product_uuid can be checked by using the command sudo cat /sys/class/dmi/id/product_uuid
It is very likely that hardware devices will have unique addresses, although some virtual machines may have identical values. Kubernetes uses these values to uniquely identify the nodes in the cluster. If these values are not unique to each node, the installation process may fail.
If you have more than one network adapter, and your Kubernetes components are not reachable on the default route, we recommend you add IP route(s) so Kubernetes cluster addresses go via the appropriate adapter.
Protocol
Direction
Port Range
Purpose
TCP
Inbound
6443*
Kubernetes API server
TCP
Inbound
2379-2380
etcd server client API
TCP
Inbound
10250
kubelet API
TCP
Inbound
10251
kube-scheduler
TCP
Inbound
10252
kube-controller-manager
TCP
Inbound
10255
Read-only kubelet API
Protocol
Direction
Port Range
Purpose
TCP
Inbound
10250
kubelet API
TCP
Inbound
10255
Read-only kubelet API
TCP
Inbound
30000-32767
NodePort Services**
** Default port range for NodePort Services.
Any port numbers marked with * are overridable, so you will need to ensure any custom ports you provide are also open.